Horwitz et al.

[45] Date of Patent:

Jul. 15, 1986

[54] CODE DIVISION MULTIPLEXER USING DIRECT SEQUENCE SPREAD SPECTRUM SIGNAL PROCESSING

[75] Inventors: Lawrence B. Horwitz, Alpharetta; Eugene T. Wiggins, Dunwoody, both

of Ga.

[73] Assignee: Sangamo Weston, Inc., Norcross, Ga.

[21] Appl. No.: 592,669

[22] Filed: Mar. 23, 1984

[56] References Cited

U.S. PATENT DOCUMENTS

3,701,894 4.048,563		Low et al
4,164,628	8/1979	Ward et al 375/1.0
4,178,549	12/1979	Ledenbach et al 375/22
4,241,447	12/1980	Epstein 375/1.0
4,247,939	1/1981	Stromswold et al 375/1.0
4,286,333	8/1981	Franklin 375/1.0
4,361,891	11/1982	Lobenstein et al 375/115
4,460,992	7/1984	Gutleber 370/19
4,493,080	1/1985	Campbell 364/724

Primary Examiner—Salvatore Cangialosi Assistant Examiner—Aaron J. Lewis Attorney, Agent, or Firm—Dale Gaudier

[57] ABSTRACT

A plurality of transmitters synchronized to a common clock each transmit a data signal spread by a common bipolar pseudo-random code having a different predetermined assigned code sequence shift. A receiver, synchronized to the clock, discriminates the signal transmitted by a predetermined transmitter from signals transmitted by the others by generating a first bipolar pseudo-random code that is a replica of the common bipolar pseudo-radom code and has a code sequence shift corresponding to that of the predetermined transmitter, and a second bipolar pseudo-random code and has an unassigned code sequence shift. The difference between the first and second bipolar pseudo-random code sequences, which is a trinary code sequence, is cross-correlated with the incoming signals. The crosscorrelation despreads only the signal applied by the sequence having the predetermined code sequence shift. Each receiver includes a number of correlation detectors offset from each other by a fraction of a code chip together with decision circuitry to identify cross-correlation peaks for optimum synchronization.

8 Claims, 38 Drawing Figures

